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D Y N A M I C S  OF A S Y S T E M  OF R E M O T E  P U N C H E S  ON A N  E L A S T I C  H A L F - S P A C E  

N. A. Lavrov and E. E. Pavlovskaya UDC 539.3 

The dynamic interaction (contact) between an elastic half-space and several smooth punches 
is studied. It is assumed that the dimensions of the contact regions ~i are much smaller than 
the distances between them and the scale of time of the process considered is comparable with 
the time required for an elastic wave to travel from one region to another. An asymptotic 
approach to the solution of the problem is proposed and the first two terms of the asymptotic 
representation of the displacement in the contact region and its neighborhood are constructed. 

In t roduc t ion .  The numerical solution of the given dynamic three-dimensional problem by the finite- 
element, boundary-element, and other methods generally involves the principal difficulty associated with 
degeneration of the contact region into a set of points. Therefore, to solve the problem, we use asymptotic 
methods. 

The integral equation of the problem is constructed using the closed form of the fundamental solution 
of the nonstationary half-space problem (Lamb's problem) [1]. The asymptotic simplification of this equation 
yields a problem of smaller dimensionality that is solved numerically. 

As an example, we consider the vertical motion of several smooth round punches with a plane base. 
Some results have already been reported at conferences [2-4]. 

The asymptotic approach to the corresponding static problem was used for the first time by Galin 
[5]. Argatov and Nazarov [6] obtained a rigorous asymptotic solution for static loading of an elastic body 
resting on several small supports. In the 1970s, attempts were undertaken to solve dynamic problems with 
a small parameter, but these solutions contained assumptions [7-9]. The bibliography of studies devoted to 
numerical solutions can be found in [10-16]. 

1. F u n d a m e n t a l  Solut ion of  L a m b ' s  Problem.  We use the closed form of the fundamental 
solution G(t, r) of the nonstationary Lamb's problem [1]. Being caused by a vertical force suddenly applied 
to the boundary at the moment t = 0, whose magnitude does not change at subsequent times, the vertical 
displacement of the points at the plane boundary z -- 0 of the elastic half-space z ~ 0 has the form 

[1( r r 

q(s) = -q l (s  2 - pl) -I/2 q- q2(s 2 - p2) -1/2 - q3(~ 2 - s2) -1/2, 

for the value of Poisson's ratio v < 0.263, where # is the shear modulus, r is the distance between the 
observer's point and the point at which the force is applied, cl and c2 are the velocities of the extension 
and shear waves, respectively, cR is the velocity of the Rayleigh wave, H(t) is the Heaviside function, and 
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Fig. 1. Location of two neighboring punches at the half- 
space surface z = 0. 

= c2/cR, qn = qn(tJ), and pm = pro(v) are dimensionless constants.  For v = 1/4, we have ql = v/3/12, 

q2 = ~ 5 / 1 2 ,  q3 = ~ 5 / 1 2 ,  pl = 1 /4 ,  p~ = (3 - v ~ ) / 4 ,  ~ = v f f +  4 ~ / 2 ,  and ~ = c 2 / c l  = 1 / 4 ~  

The numerical  results given in this paper  were obtained for these values of the coefficients. 
2. C o n s t r u c t i o n  o f  t h e  A s y m p t o t i c  R e p r e s e n t a t i o n  fo r  t h e  D i s p l a c e m e n t .  We consider a 

system of N round smooth (friction is absent) punches located at the boundary z = 0 of the elastic half-space 
z ~< 0 [the contact region is s = t2~i (i = 1 , . . . ,  N) ,  where s are the contact zones] (Fig. 1). The seismic 

pulse of the  displacement w0 = wo(t/T) of the boundary z = 0 causes the vertical displacement of the punches 

(T is the scale of time). The  function w0 is a sufficiently smooth bounded finite function (or the sum of the 

finite and Heaviside functions). The  max imum radius of the punch, h = max{hk}, is assumed to be much 
k 

smaller than  the minimum distance l = m i n { I x ~ -  mkl} between their  centers [~ = h/l = o(1), and xi is the 
i ,k 

radius-vector of the center of the i th  punch]. The scale of t ime T of the external action w0 (and, hence, the 
process) is comparable  with the t ime l/c2 required for the shear wave to travel between the nearest punches 

[c2Tll = O(i)] .  
Using the fundamental  equat ion (1), we write the following boundary  integral equat ion of elastody- 

namics: 

w -  wo = ~ t') a ( t -  t ' , lx  - s  t' x"~ ,,-~, ; dt' aa(x'), (2) 
i = 1  0 f~i 

where w(x, t /T) is the vertical displacement and a(x, t/T) is the contact  pressure. 
The  purpose of an asympto t i c  analysis is to simplify equality (2) with the use of the adopted assump- 

tions on the character of the process and on the fact that  the punches are remote from each other. To estimate 

the deflection w at the points of the region x E f~k, we rewrite (2), separat ing the contr ibution of the contact 

stresses in this region: 
t 

w - ~ o  = o ( t  - t'------)) 
0 gtk 

t 
O 

. g  

+v- ' iN  o(, 
0 1]~ 

N 
Here the notat ion ~-'~ = ~ is introduced. 

i = l , i # k  
The  small dimensions of the region ~i in comparison with the distances to the neighboring regions 

enables one to estimate asympto t ica l ly  the contribution from the terms corresponding to load convolutions 
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with the fundamental solution over the regions Fti (i # k) to the displacement. The  distances Ix - x '  I and 

IXk -- xil  differ slightly, i.e., the quanti ty (IXk -- xil  -- Ix -- x ' l ) / I x k  -- xil is a quant i ty  of the order O(s)  (Fig. 
1). The  Green's function G(t ,  r) depends on the distance between the observer's point and the point  where 
the force is applied; therefore, representing G(t, r)  as the sum G(t,  Ix \  - xiI)  + [G(t, r) - G(t ,  I x \  - x~[)], 

one can find a term with the factor G(t,  Ix\  - x d )  tha t  is coordinate-independent and show that  the other 
par t  is a higher-order quantity. To this end, after the integral is taken over t ime by parts, we use the series 
expansion in the small parameter  r = mkax{hk} /min{ Ix i  -- xk]} in the second term on the right side of Eq. 

i,k 
(3). After transformations, dividing both sides of the equation by h, we obtain 

w w0 1Sl ( 0  G(t, lx ::'t)) a (  t ' - - * ~ ] d ~ ( x ' )  
h h h \ - ~  ~ , x  

~k 

)]* (F,(tlT) vh, , '  (4) 

i i  < - - + o ,  F, = 

12i 

where the asterisk denotes convolution in time t i T  and b = (Tc2) l l .  
The first term on the right side of Eq. (4) can be simplified using the assumption on slow variation of 

the pressure (7 in the scale of t ime required for the shear wave to travel through the region ~k- In this case, 
the small parameter  is the ratio h / (Tc2 )  = s/b. We integrate this t e rmover  t ime by parts. Representing the 
Green function in the form G(t ,  Ix - x'l) = G3(Ix - x ' l ) H ( t  ) + [G(t, Ix - x'[) - G3(Ix - x ' l )H(t)] ,  performing 
asymptotic  expansions, and integrating over time, we obtain 

732 "(/20 i /  h h ~ [ t L h G a ( I  x -  '1)1 a ( t l T ,  x ' )  d f l ( x ' )  
# h 2 

' ~ \  # h  2 ) 2~rb O ( t / T ) \  #h  2 7' 

1 

i 1 1 c2 + q(s) ds - 2q3 arccos - < 0, r A = A ( ~ ) =  2 2 cl 
(2 

where G 3 -- (1 - v) / (2 : r#r )  is the Boussinesq solution [17]. 
We now consider small rotations of the punch about  the horizontal axes x and y. An asymptot ic  

analysis of the contact equat ion (2) shows that  the contribution of the terms connected with rota t ion to 
the displacement is of the order 0(r Therefore, in determining the deflection with accuracy up to O(~2), 

rotat ions can be ignored. 
In this case, where the operator  of convolution over the region ~k on the right side of equali ty (5) 

admits inversion, one can continue analysis of this equality, using the known solution of the corresponding 
static problem and treat ing (5) as an equation for a desired a. For the displacement wk of the kth punch, we 

obtain 

wk wo 1 - ~  h F k ( t l T )  + r  0 ( F k ( t l T ) ~  
h h "~ 4 h-~ #h  2 2r~b O ( t / T ) \  - ~  ) 

' 

(For an arbi t rary shape of the region ~k, this inversion can easily be performed numerically.) 
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At first sight, the  resulting contact equation (6) distorts the physical nature  of the process. Indeed, 
considering it as an equat ion for Fk, one can construct a formal solution tha t  contains the exponentially 
increasing term (as t --* oo). However, more careful analysis shows that  the bounded solution can be 
constructed with an appropriate  choice of the constant (having the meaning of the initial condition) in 
the solution. The initial phase of the dynamic process is described with distortions. [The real wave character 
of the initial phase of the  process can be described only by the exact equation (2).] The long-wave asymptotic 
model (6) describes nei ther  the beginning of the process (the duration is of the order h/c2)  nor the changes 
that  occur in the system for the time h/c2 .  

To close the dynamic  formulation of 
we have 

where Mk is the mass of the kth punch. 
We introduce the dimensionless time 

the problem, we use the second Newton law. For the kth punch, 

~ k  ~ ~ , 

r = t / T ,  the dimensionless parameters  of the order 0(1),  namely, 

b = T c 2 / l ,  5i = M i / M ,  and 0i = hi~h,  /3 = M / ( 1 2 h p ) ,  oei : (20i / (rrb)) lA] ,  a i  = 02ib~-/(5i/3), and the 
dimensionless functions g i k ( r )  = a ( > ~  - x k l , t ) # l ,  v i ( r )  = w d t / T ) / h  , Vo(T) = w o ( t / T ) / h ,  and f i ( r )  = 
F ~ ( t / T ) ( 1 / ( h ~ ) ) ,  where M = m/in{M/} and p is the density of the medium. (In principle, the approach 

proposed in this paper  makes it possible to analyze a broader range of variation of the parameters/3 and ai.) 
We rewrite the system in dimensionless form: 

I - - t /  ] . - - / /  
v k ( r )  - vo ( r )  = 4 Okra(r)  -- r  

I 2 

~k(~) = -~kfk(~)  (k = 1 . . . . .  N). 

The dots denote  differentiation with respect to the dimensionless t ime r and the asterisk denotes 
convolution in r .  The  system is to be supplemented by the initial conditions vk(0) and 'bk(0) (k = 1 , . . . ,  N).  

We shall seek a bounded [limvk(r) < e~ and l imfk( r )  < c~ as r ~ o~] solution of the problem. Using 
the asymptotic es t imat ion fk( r )  - exkfk( r )  = fk ( r  -- r + O(~2), we obtain vk(r)  - v0(r) - EY~'02 g ik ( r )  * 

] i ( r )  = ((1 - ~ ' ) / 4 ) O k f k ( T  -- e~ek) + O(r Regarding this equality as a functional equation for the desired 
function fk( r )  and solving it, we arrive at the contact equation 

r+Eze  k 

1-4 ~ okf,( ,)  = v , ( ,  + ~o~) - ~o(~ + ~ k )  - ~y-~'o~ f gik(, + ~ - s)k( , )  d, + o(~2). (z) 
0 

Expanding the right side of (7) into a series in terms of the small parameter r we finally obtain the system 
of equations of the problem in the form 

1 - ~ ,  

4 (8) 

D y n a m i c s  o f  t h e  S y s t e m  of  R o u n d  P u n c h e s .  Calculations were performed for two (N = 2) . 

equal punches Vl = v2 = v under the initial conditions v(0) = 7)(0) = 0. System (8) was solved numerically 
for various values of the parameters r (for/3 = 1.5) (Fig. 2) and/3 (for e = 0.1) (Figs. 3-5). Poisson's ratio 
was taken to be ~ -- 1/4 and b = 1. The seismic pulse was taken in the form w0 -- s i n 2 O r t / T ) H ( t ) H ( 1  - t / T ) .  

Figures 2, 3, and 5 show the dimensionless displacement of the punch v versus time, and Figs. 4 and 6 show 
the contact force f under  the punch versus time. 
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Fig.  2. The  d i sp lacement  v versus t ime  (# = 1.5): ~ = 0.01 (t) ,  0.05 (2), and  0.1 (3). 

Fig. 3. T h e  d i sp lacement  v versus t ime (E = 0.1): fl = 1 (1), 1.5 (2), and  2 (3). 

f 

4 

2 

0 

-- I I I I l I I 

0 1 2 3 t / T  

P 

0.8 

0.4 

0 

-0.4 

-0,8 
I I I I I 

2 4 t /T  

Fig. 4 Fig. 5 

Fig.  4. The  reac t ion  f of the elastic medium versus t ime (E = 0.1): # = 0.5 (1), 1 (2), a n d  2 (3). 

Fig.  5. T h e  d i sp lacement  v versus t ime (e = 0.1): quasis ta t ic  model  (curves 1 and 1~); d y n a m i c  model  (curves 
2 and  2'); fl = 1.5 (curves 1 and 2) and  3 (curves 1' and 2'). - 
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Fig. 6. The  reac t ion  f of the  e las t ic  med ium ver- 
sus time (~ = 0.1 and s = 0.1): curve  1 refers to 
the isolated punch  and curve 2 to  t he  sys tem of two 
punches. 
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Figure 5 show the displacement v versus time that  was calculated by the dynamic and quasistatic 
models. The latter model is described by the equation 

2 "~l-u 
Z 1+  = . 0 .  

It is clear from Fig. 5 that  the quasistatic model overestimates the displacement compared to the dynamic 
model (8). Figure 6 shows contact forces acting under the isolated punch (curve 1) and in the case of a system 
of two punches (curve 2) tha t  were calculated by the proposed asymptotic model. It follows from Fig. 6 that  
the contact forces cannot be determined correctly if tile influence of the second punch is ignored. 

Conc lus ions .  The advantages of the resulting contact equation are as follows: its dimensionality is 
smaller compared to that  of the initial integral equation of elastodynamics and it is suitable for numerical 
solution. The proposed approach can be generalized to the following cases: 

- -  dynamic interaction between the half-space and the bodies occurs over the three-dimensional contact 
region (under the condition that  the depth of their penetration into the medium is much smaller than the 
distance between them); 

- -  the displacement and stress at the boundary have three components; 
- -  the bodies interacting with a half-space are deformable; 
- -  there is a small plastic zone in the contact region. 
It should be noted that  if the scale of time of the process far exceeds the maximum time required for 

tile compression wave to travel between the regions f~i, the dynamic problem becomes a quasistatic problem 
(with parameter t). If the time scale is comparable with the time required for the shear wave to travel between 
tile regions, tile proposed asymptotic approach is effective. In the case of a short-duration process, where its 
scale is comparable with the time required for the elastic wave to run across the region f~i, the interaction 
between the punches through the medium can be ignored and the motion can be calculated by solving the 
dynamic problem for an isolated punch. Finally, if this scale is much smaller than the time required for the 
wave to travel across the region, the problem for a plane punch becomes almost one-dimensional, since the 
mutual influence at different points in the contact region does not have t ime to show up. 

The authors are grateful to S. A. Vakulenko and D. A. Indeitsev for their attention to this work and 
useful discussions. 
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